Geomorphic assessments of New Hampshire's Rivers

Shane Csiki New Hampshire Geological Survey Presentation to WQSAC Concord, NH

Fluvial = action of running water Geomorphology

Geo = Earthmorph = formology = study of

The study of how running water shapes the landforms on the Earth's surface

So, why do we care about all this river geomorphology stuff??!!

What are geomorphic assessments?

- Methods to evaluate the present condition of a river.
- Are flow and sediment transport in balance?
 - Excessive sedimentation
 - Excessive erosion
- Is the river maintaining geomorphic integrity?
- If yes, increases the chances of good habitat for aquatic life.

Geomorphic assessments so far in New Hampshire

2008

• Upper and Lower Exeter River watersheds

<u>2</u>009

- Ammonoosuc
- Middle Exeter watershed
- Isinglass

<u>2010</u>

Cocheco and Lamprey watersheds

2011 and beyond

- Piscataquog
- Souhegan
- ?????

Phase 1

- Determination of reach breaks
 - Grade controls
 - Surficial and bedrock geology
 - Soils
 - Land cover/land use
 - Major tributaries
 - Changes in bed material characteristics
 - Sinuosity
- Windshield survey
- Try to determine activities that are potentially impacting river process

Phase 2

- In-depth field assessment. For each reach, we collect:
 - Stream channel dimensions (width, depth, floodprone width, bed material)
 - River corridor encroachments
 - Condition of the banks and adjacent floodplain
 - Wetlands, debris jams, stormwater inputs, beaver dams
 - Bed sediment storage, bars, headcuts, alterations (such as channel straightening)
 - Rapid habitat assessment
 - Rapid geomorphic assessment

Adjustment Process	Condition Category																	
Aujustiment Frocess	Reference			Good				Fair			Poor							
7.1 Channel Degradation (Incision) • Exposed till or fresh substrate		☐ Little evidence of localized slope increase or nickpoints.				☐ Minor localized slope increase or nickpoints.				☐ Sharp change in slope, head cuts present, and/or tributaries rejuvenating.				☐ Sharp change in slope an or multiple head cuts present Tributaries rejuvenating.				
in the stream bed and exposed infrastructure (bridge footings). New terraces or recently abandoned flood prone areas. Headcuts, or nickpoints sig-	□ Incision Ratio ≥ 1.0 < 1.2 and Where channel slope < 4% Entrenchment ratio > 1.4 Where channel slope ≥ 4% Entrenchment ratio > 1.2				□ Incision Ratio ≥ 1.2 < 1.4 and Where channel slope < 4% Entrenchment ratio > 1.4 Where channel slope ≥ 4% Entrenchment ratio > 1.2				☐ Incision Ratio ≥ 1.4 < 2.0 and Where channel slope < 4% Entrenchment ratio > 1.4 Where channel slope ≥ 4% Entrenchment ratio > 1.2				$\begin{tabular}{ c c c c c }\hline & Incision ratio ≥ 2.0\\ & and\\ \hline & Where channel slope $< 4\%$\\ & Entrenchment ratio ≤ 1.4\\ \hline & Where channel slope $\geq 4\%$\\ & Entrenchment ratio ≤ 1.2\\ \hline \end{tabular}$					
nificantly steeper bed segment and comprised of smaller bed material than typical steps. • Freshly eroded, vertical banks. • Alluvial sediments that are	☐ Step-pool systems have full complement of expected bed features, steps complete with coarser sediment (≥ D80).				☐ Step-pool systems have full complement of expected bed features, steps mostly complete.				Step-pool systems with incomplete (eroded) steps, dominated by runs.				Step-pool bed features eroded and replaced by plane bed features.					
Tibutary rejuvenation, observed through the presence of inclopaints at or upstream of the mouth of a tributary. Depositional features with steep faces, usually occurring on the downstream end. Stream Type Departure Type of SID:		☐ No significant human- caused change in channel con- finement.				Only minor human-caused change in channel confinement.				Significant human-caused change in channel confinement but no change in valley type.			☐ Human caused change in valley type.					
		☐ No evidence of historic / present channel straightening, dredging, and/or channel avul- sions.				☐ Evidence of minor historic dredging and/or channel avulsion.				☐ Evidence of significant historic channel straightening, dredging, or gravel mining, and/or channel avulsions.				Extensive historic channel straightening, commercial gravel mining, and/or recent channel avulsions.				
		☐ No known flow alterations (i.e., increases in flow and/or decreases in sediment supply).				Some increase in flow and/or minor reduction of sediment load.				Major historic flow altera- tions, greater flows and/or re- duction of sediment load.			☐ Major existing flow altera- tions, greater flows and/or reduction of sediment load.					
Score: Historic	20	19	18	17 16	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1
Condition Department Degradation	7.5 Channel Adjustment Scores – Streat Condition Reference Good Departure W.S. Minor Degradation				Condi Fair Majo	· I	- Channe Poor Extreme	Evolut STD			Condition Rat (Total Score / 8				Channel Evolution Stage:			
Aggradati Widening Planform Sub-tota								Total S	core:			7.6 Stre Conditi						
Channel A	•			-			e / High /					whe	re existin	g stream	e Departur m type is n ne referenc	.0		

Stream Sensitivity

Decreasing quality of stream condition

Increasing instability by stream type

Existing Stream Type	In regime – Reference or good condition	Major Adjustment – Fair Condition	Stream Type Departure or Poor Condition				
A1, A2, B1, B2	Very Low	Very Low	Low				
C1, C2	Very Low	Low	Moderate				
G1, G2	Low	Moderate	High				
F1, F2	Low	Moderate	High				
B3, B4, B5	Moderate	High	High				
B3c,C3, E3	Moderate	High	High				
C4, C5, B4c, B5c, E4, E5	High	Very High	Very High				
A3, A4, A5, G3, F3,	High	Very High	Extreme				
G4, G5, F4, F5	Very High	Very High	Extreme				
D3, D4, D5	Extreme	Extreme	Extreme				

So, let's say a river reach rates as high, very high, or extreme in stream sensitivity?

Does that means the river reach fulfills geomorphic integrity, or a condition of stability?

Well, that's part of the story!

Provides a nice summary of channel stability risk

Let's see what others have been doing to crack this nut

EPA Relative Bed Stability Index

- Basic premise: For a reach of stream, are there more fine materials on the bed than one would expect?
- If so, it suggests, an upstream source probably bank erosion (which means potential instability) somewhere upstream.
- Excess sediment has been leading cause of water quality impairment for years.

Arizona

- Arizona Department of Environmental Quality
- No geomorphic or physical habitat integrity definition in rules. Only mention in rules is with regard to "bottom sediments."
- Hence, why chose RBS
- Showed promising results

Vermont

- Is also considering adopting a legislative use definition for river physical integrity.
- Looking at options.
- Phase 2 output as "first cut"

Phase 3

Vermont Stream Geomorphic Assessment Phase 3 Handbook

SURVEY ASSESSMENT

FIELD AND DATA ANALYSIS PROTOCOLS

Vermont Agency of Natural Resources May 2009

- •A detailed, survey-grade field assessment that goes beyond a rapid Phase 2.
- •The next step in trying to assess river instability?
- •Link to instability?
- •A combination with the EPA Relative Bed Stability index?

WARSSS

Watershed Assessment of River Stability & Sediment Supply

- EPA
- Three phases:
 - Reconnaissance Level Assessment (RLA)
 - Rapid Resource Inventory for Sediment and Stability Consequence (RRISSC)
 - Prediction Level Assessment (PLA)
- Similarities to Vermont Phase 1-3 protocols

Other Considerations

- Establishing a baseline for monitoring changes
 - permanent benchmarks
- Long-term monitoring

Summary

- We have a Phase 2 protocol presently in use that gives us some idea of a river's *potential* sensitivity to future change.
- But is it unstable, or lacking integrity?
- Phase 2 can tell us if a reach has potential instability, as a "first cut" for more measurements to determine true instability.